196 research outputs found

    Noise produced by turbulent flow into a rotor: Theory manual for atmospheric turbulence prediction and mean flow and turbulence contraction prediction

    Get PDF
    Prediction of helicopter main rotor noise due to ingestion of atmospheric turbulence was analyzed. The analysis combines several different models that describe the fluid mechanics of the turbulence and the ingestion process. Two models, atmospheric turbulence, and mean flow and turbulence contraction were covered. The third model, covered in a separate report, describes the rotor acoustic mode. The method incorporates the atmospheric turbulence model and a rapid distortion turbulence contraction description to determine the statistics of the anisotropic turbulence at the rotor plane. The analytical basis for a module was provided which was incorporated in NASA's ROTONET helicopter noise prediction program. The mean flow and turbulence statistics associated with the atmospheric boundary layer were modeled including effects of atmospheric stability length, wind speed, and altitude. The turbulence distortion process is modeled as a deformation of vortex filaments (which represent the turbulence field) by a mean flow field due to the rotor inflow

    Noise produced by turbulent flow into a rotor: Users manual for atmospheric turbulence prediction and mean flow and turbulence contraction prediction

    Get PDF
    A users manual for a computer program for predicting atmospheric turbulence and mean flow and turbulence contraction as part of a noise prediction scheme for nonisotropic turbulence ingestion noise in helicopters is described. Included are descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program

    Noise produced by turbulent flow into a rotor: Users manual for noise calculation

    Get PDF
    A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program

    Experimental assessment of helicopter rotor turbulence ingestion noise in hover

    Get PDF
    An experiment was conducted to assess the accuracy of a theory for non-isotropic turbulence ingestion. In order to generate non-isotropic turbulence in a controlled environment, a scale model rotor in a closed chamber was used so that the turbulence generated by the rotor was reingested by the recirculating flow. Simultaneous measurements of turbulence inflow properties and far field acoustics were acquired. Measurements confirmed that the inflow turbulence was highly non-isotropic. The measured aerodynamic properties were used as inputs for the noise prediction procedure. The general agreement between the non-isotropic noise prediction procedure and the experiment was good, although the procedure generally overpredicts the quasi-tonal low to mid range frequencies and underpredicts the higher broadband signals. The predicted sound power level as a function of polar angle was in close agreement with measurements, except near the rotor plane, which is not modeled by the present analysis. It is determined that the most sensitive parameter influencing the predicted noise was the turbulence intensity

    Scintillation observations at medium latitude geomagnetically conjugate stations

    Get PDF
    Scintillation observations at medium latitude geomagnetically conjugate station

    Helicopter rotor noise due to ingestion of atmospheric turbulence

    Get PDF
    A theoretical study was conducted to develop an analytical prediction method for helicopter main rotor noise due to the ingestion of atmospheric turbulence. This study incorporates an atmospheric turbulence model, a rotor mean flow contraction model and a rapid distortion turbulence model which together determine the statistics of the non-isotropic turbulence at the rotor plane. Inputs to the combined mean inflow and turbulence models are controlled by atmospheric wind characteristics and helicopter operating conditions. A generalized acoustic source model was used to predict the far field noise generated by the non-isotropic flow incident on the rotor. Absolute levels for acoustic spectra and directivity patterns were calculated for full scale helicopters, without the use of empirical or adjustable constants. Comparisons between isotropic and non-isotropic turbulence at the rotor face demonstrated pronounced differences in acoustic spectra. Turning and contraction of the flow for hover and low speed vertical ascent cases result in a 3 dB increase in the acoustic spectrum energy and a 10 dB increase in tone levels. Compared to trailing edge noise, turbulence ingestion noise is the dominant noise mechanism below approximately 30 rotor harmonics, while above 100 harmonics, trailing edge noise levels exceed turbulence ingestion noise by 25 dB

    Supersonic Jet Noise from Round and Chevron Nozzles: Experimental Studies

    Get PDF
    High speed exhaust noise reduction continues to be a research challenge for supersonic cruise business jets as well as for current and future tactical military aircraft. Significant noise reduction may be possible from advanced concepts for controlling instability generated large-scale turbulence structures in the jet shear layer, generally accepted to be the source of aft-angle noise. In response to this opportunity, our team is focused on experimental diagnostic studies and unique instability modeling suited for identifying control strategies to reduce large scale structure noise. The current paper benchmarks the jet noise from supersonic nozzles designed to provide the supporting experimental data and validation of the modeling. Laboratory scale jet noise experiments are presented for a Mach number of Mj = 1.5 with stagnation temperature ratios ranging from Tr = 0.75 to 2. The baseline configuration is represented by a round converging-diverging (CD) ideal expansion nozzle. A round CD nozzle with chevrons is included as the first of several planned non-circular geometries directed at demonstrating the impact on large scale structure noise and validating noise prediction methods for geometries of future technological interest. Overexpanded and underexpanded conditions were tested on both nozzle configurations. The resulting data base provides an opportunity to benchmark the statistical characteristics of round and chevron nozzle data. The current paper examines far field spectra, directivity patterns, and overall sound pressure level dependence comparing observed characteristics with the fine scale turbulence noise and large-scale turbulence structure noise characteristics identified by Tam. In addition, the paper probes the effect of chevrons on the developing flow field and suppression of screech tones. Measurements are also reported from a far-field narrow aperture phased array system used to map the acoustic source distribution on the jet axis. The dominant source region, situated between the end of the potential core and the sonic point, was found to agree with the peak amplitude location of the jet near field wavepackets measured using a unique near field array. This observation supports the cause-effect link between large-scale turbulence structures in the shear layer and their dominant contribution to aft radiated far field noise

    Decomposition of High Speed Jet Noise: Source Characteristics and Propagation Effects

    Get PDF
    Current research programs directed at supersonic engine exhaust noise reduction are demonstrating benefits of 3-4 dBA using passive methods to increase jet mixing and break up shock cells in over-expanded flows. While progress is being made, high speed jet noise continues to be a research challenge for small business jets and tactical military aircraft. The current work benchmarks high speed jet noise using laboratory scale jets for the purpose of a) identifying source and propagation mechanisms, and b) providing validation data for simulation/modeling methods. Laboratory scale experiments are presented over a Mach number range of M = 0.68 to 1.5 with static temperature ratio ranging from Tr = 0.68 to 2. A unique near field rotating phased microphone array technique was used to identify the large-scale turbulence structure noise source and Mach waves in supersonic shock-free jets. A companion paper documents the near field pressure statistics and projection of the convected wave packet to the far field. Validation against the directly measured far field levels quantitatively establishes the large scale structure noise contributions. The combined studies underpin a long term effort to develop modeling methods and new concepts for jet noise suppression based on controlling the evolution of the large-scale turbulence structures

    Fracture–dislocation of the shoulder and brachial plexus palsy: a terrible association

    Get PDF
    Primary post-traumatic anterior dislocation of the shoulder with associated fracture of the greater tuberosity and brachial plexus injury is rare and, to our knowledge, has never previously been reported in the literature. We present a case of this unhappy triad in which a brachial plexus injury was diagnosed and treated 3 weeks later. The characteristics of this rare condition are discussed on the basis of our case and the published literature in order to improve early diagnosis and treatment of this lesion
    corecore